skip to main content


Search for: All records

Creators/Authors contains: "Zhang, Boyuan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available January 1, 2025
  2. Free, publicly-accessible full text available June 7, 2024
  3. Free, publicly-accessible full text available June 21, 2024
  4. Free, publicly-accessible full text available June 21, 2024
  5. Today’s large-scale scientific applications running on high-performance computing (HPC) systems generate vast data volumes. Thus, data compression is becoming a critical technique to mitigate the storage burden and data-movement cost. However, existing lossy compressors for scientific data cannot achieve a high compression ratio and throughput simultaneously, hindering their adoption in many applications requiring fast compression, such as in-memory compression. To this end, in this work, we develop a fast and high-ratio error-bounded lossy compressor on GPUs for scientific data (called FZ-GPU). Specifically, we first design a new compression pipeline that consists of fully parallelized quantization, bitshuffle, and our newly designed fast encoding. Then, we propose a series of deep architectural optimizations for each kernel in the pipeline to take full advantage of CUDA architectures. We propose a warp-level optimization to avoid data conflicts for bit-wise operations in bitshuffle, maximize shared memory utilization, and eliminate unnecessary data movements by fusing different compression kernels. Finally, we evaluate FZ-GPU on two NVIDIA GPUs (i.e., A100 and RTX A4000) using six representative scientific datasets from SDRBench. Results on the A100 GPU show that FZ-GPU achieves an average speedup of 4.2× over cuSZ and an average speedup of 37.0× over a multi-threaded CPU implementation of our algorithm under the same error bound. FZ-GPU also achieves an average speedup of 2.3× and an average compression ratio improvement of 2.0× over cuZFP under the same data distortion. 
    more » « less
    Free, publicly-accessible full text available June 16, 2024
  6. Electric fields have been used to control and direct chemical reactions in biochemistry and enzymatic catalysis, yet directly applying external electric fields to activate reactions in bulk solution and to characterize them ex situ remains a challenge. Here we utilize the scanning tunneling microscope-based break-junction technique to investigate the electric field driven homolytic cleavage of the radical initiator 4-(methylthio)benzoic peroxyanhydride at ambient temperatures in bulk solution, without the use of co-initiators or photochemical activators. Through time-dependent ex situ quantification by high performance liquid chromatography using a UV-vis detector, we find that the electric field catalyzes the reaction. Importantly, we demonstrate that the reaction rate in a field increases linearly with the solvent dielectric constant. Using density functional theory calculations, we show that the applied electric field decreases the dissociation energy of the O–O bond and stabilizes the product relative to the reactant due to their different dipole moments. 
    more » « less
  7. null (Ed.)
    Designing highly insulating sub-nanometer molecules is difficult because tunneling conductance increases exponentially with decreasing molecular length. This challenge is further enhanced by the fact that most molecules cannot achieve full conductance suppression with destructive quantum interference. Here, we present results for a series of small saturated heterocyclic alkanes where we show that conductance is suppressed due to destructive interference. Using the STM-BJ technique and density functional theory calculations, we confirm that their single-molecule junction conductance is lower than analogous alkanes of similar length. We rationalize the suppression of conductance in the junctions through analysis of the computed ballistic current density. We find there are highly symmetric ring currents, which reverse direction at the antiresonance in the Landauer transmission near the Fermi energy. This pattern has not been seen in earlier studies of larger bicyclic systems exhibiting interference effects and constitutes clear-cut evidence of destructive σ-interference. The finding of heterocyclic alkanes with destructive quantum interference charts a pathway for chemical design of short molecular insulators using organic molecules. 
    more » « less
  8. Recent years have seen tremendous progress towards understanding the relation between the molecular structure and function of organic field effect transistors. The metrics for organic field effect transistors, which are characterized by mobility and the on/off ratio, are known to be enhanced when the intermolecular interaction is strong and the intramolecular reorganization energy is low. While these requirements are adequate when describing organic field effect transistors with simple and planar aromatic molecular components, they are insufficient for complex building blocks, which have the potential to localize a carrier on the molecule. Here, we show that intramolecular conductivity can play a role in controlling device characteristics of organic field effect transistors made with macrocycle building blocks. We use two isomeric macrocyclic semiconductors that consist of perylene diimides linked with bithiophenes and find that the trans -linked macrocycle has a higher mobility than the cis -based device. Through a combination of single molecule junction conductance measurements of the components of the macrocycles, control experiments with acyclic counterparts to the macrocycles, and analyses of each of the materials using spectroscopy, electrochemistry, and density functional theory, we attribute the difference in electron mobility of the OFETs created with the two isomers to the difference in intramolecular conductivity of the two macrocycles. 
    more » « less